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We calculated the two lowest electronically adiabatic potential energy surfaces of ammonia in the region of
the conical intersection and at a sequence of geometries along which one of the N-H bonds is broken. We
employed both a multireference (MR) method and a single-reference (SR) method. The MR calculations are
based on multiconfiguration quasidegenerate perturbation theory (MC-QDPT) with a 6-311+G(3df,3pd) basis
set. The SR calculations, carried out with the same basis, employ the completely renormalized equation-of-
motion coupled-cluster method with singles and doubles, and a noniterative treatment of triples, denoted
CR-EOMCCSD(T). At 91 geometries used for comparison, including geometries near a conical intersection,
the surfaces agree to 7% on average.

1. Introduction

Electronic structure theory of nondegenerate ground electronic
states of molecules has made great advances, and many
important properties of molecules in the ground electronic state
can be calculated more reliably or more conveniently than they
can be measured.1-3 Furthermore, the value of this advance is
greatly multiplied by the fact that many of the methods are
systematic enough to be meaningfully tested and to be translated
into computer codes that can be used even by nonexperts, which
has allowed for unprecedented widespread progress. Quaside-
generate electronic states, such as those encountered in studies
of bond breaking and biradicals, open-shell states and, of
particular interest to us in this work, excited electronic states,
are another matter. Although there has also been great progress
in the area of single-reference excited-state calculations, par-
ticularly after the introduction of the response4 and equation-
of-motion (EOM)5,6 coupled-cluster (CC) methods in quantum
chemistry, traditionally the most successful treatments of
quasidegenerate and excited states have been based on a
multireference (MR) treatment.7,8 Multireference treatments are
very powerful, but they do have some important disadvantages,
mainly related to the choice of reference state. For small
systems, these problems are ameliorated and can largely be
solved by using a full-valence complete active space. However,
for larger systems such a reference space is usually unaffordable,
and one must limit the reference space. There is no completely
general systematic way to do this, which has two conse-
quences: (i) the methods often require expert users; (ii) in many

cases, such as those encountered in transition metal chemistry,
one cannot test the methods systematically because each system
requires an individual practical decision on the active space that
may become too large or difficult to define for practical
applications. In this respect a more systematic single-reference
procedure for electronically excited states would be a major
step toward widespread progress.

Recently, a new class of single-reference (SR) coupled cluster
methods with great potential for the description of at least some
classes of bond breaking, biradicals, and excited states has been
developed; these methods are based on the method of moments
of coupled cluster equations (MMCC).9-11 In the present paper
we apply an approximate variant of the MMCC approach for
ground and excited states, called the completely renormalized
(CR) EOMCC method with singles, doubles, and noniterative
triples (CR-EOMCCSD(T)),11d,12 to a particularly challenging
problem, the potential energy surfaces for the photodissociation
of ammonia, including geometries near the conical intersection
and along the dissociation coordinate, and we compare these
calculations to calculations by a powerful multireference method,
namely multiconfiguration quasidegenerate perturbation theory13,14

(MC-QDPT) based on a full-valence complete-active-space self-
consistent field7 (CASSCF, also called FORS) reference func-
tion. The CASSCF calculation includes static correlation, and
the perturbation calculation adds dynamical correlation. The CR-
EOMCCSD(T) approach treats both types of correlations
dynamically via excitations from a single-reference determinant.

2. Theory

2.1. MC-QDPT. The MC-QDPT method is based on mul-
tireference perturbation theory (MRPT) and involves expansion
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to the second order of perturbation theory. The reference
functions for the perturbation calculations are obtained from
the CASSCF scheme, optimized for a state average over the
lowest-energy states of interest. The energy through the first
order is the original CASSCF approximation, and at second
order one includes single and double excitations. The MC-QDPT
energies are the eigenvalues of the matrix with perturbed matrix
elements. We refer the reader to refs 13 and 14 for further
details.

2.2. CR-EOMCCSD(T). The CR-EOMCCSD(T) method12

is a single-reference approach in which suitably defined non-
iterative corrections due to triple excitations are added to CCSD
or EOMCCSD energies. These corrections are derived from the
MMCC formalism,9-11 which, in general, provides us with the
expressions for the differences between the CC or EOMCC and
exact, full CI energies of the electronic states of interest. The
CR-EOMCCSD(T) expressions for the ground-state (µ ) 0) and
excited-state (µ > 0) energies have the form

whereEµ
EOMCCSD are the CCSD (µ ) 0) and EOMCCSD (µ >

0) energies respectively, and the numerator and denominator
termsNµ

CR(T) andDµ
(T), used to calculate the corrections due to

triple excitations, have been defined elsewhere.12 In this paper,
we test the performance of the basic variant ID of the
CR-EOMCCSD(T) theory.11d,12

3. Calculations and Results

We calculated potential energy curves for the ground state
(V1) and the first excited state (V2) of ammonia using both MC-
QDPT and CR-EOMCCSD(T) with the 6-311+G(3df,3pd)16,17

basis set. We label the three hydrogen atoms as HA, HB, and
HC, and the N-H bond distances are labeled asRA, RB, and
RC. The orientation was set with the nitrogen atom at the origin
with HA along they-axis. The angles that the N-HB and N-HC

directions make with they-axis are denoted byωB and ωC,
respectively. The out-of-plane angle is denoted byR. The
coordinates of the hydrogen atoms are

We generated four scans forC2V geometries by setting the two
distancesRB andRC equal to 1.020 Å and by setting the angle
ωB equal toωC. We then scanned 22 or 23 values ofRA in the
0.8-11 Å range for each of four pairs ofωB andR:

Scan 1: ωB ) 60°, R ) 0°
Scan 2: ωB ) 60°, R ) 3°
Scan 3: ωB ) 52°, R ) 0°
Scan 4: ωB ) 52°, R ) 3°

This yields 91 geometries.
The MC-QDPT calculations were carried out using the

HONDOPLUS-v.4.518,19electronic structure package. The active
space consisted of 7 orbitals with 8 electrons; for ammonia this
corresponds to a full-valence active space. In the MC-QDPT

calculation, one inactive orbital corresponding to the 1s core
orbital of N was frozen (that is kept doubly occupied in all
CSFs). MC-QDPT includes single and double excitations from
all of the active orbitals.

The CR-EOMCCSD(T) calculations and the underlying
CCSD and EOMCCSD computations were performed with the
routines described in refs 12 and 20; these routines form part
of the Michigan State University suite of coupled-cluster
programs that are incorporated into GAMESS.21

Note that because CR-EOMCCSD(T) is a single-reference
method and the system shows a conical intersection, the
reference configuration is below the “excited” ones at some
geometries and above it at others, where the “excitation energy”
is negative. The energy values of the lowest two adiabatic states
for all 91 geometries in scans 1-4 are provided in the
Supporting Information.

To establish a convenient zero of energy, we subtractedE0

from all energies calculated by either method, whereE0 is
-56.467 971 hartrees and is the energy at the ground-state
equilibrium geometry of ammonia calculated using the MC-
QDPT method. With this zero of energy, we calculate the mean
value of the energy for all the points using

whereV1 andV2 are the ground- and excited-state energies, and
we calculateε, which is the mean unsigned deviation of the
MM-EOM-CC energies from the MC-QDPT ones for both
adiabatic surfaces, using

In eqs 3 and 4, the sum is over all 91 geometries. The percentage
error is defined as

4. Discussion and Concluding Remarks

The MC-QDPT method13,14has several advantages including
an ability to describe potential energy surfaces along bond
breaking coordinates, applicability to open-shell excited states,
stability of both ground and excited states over wide regions of
configuration space, and applicability to degenerate and quaside-
generate systems. The CASSCF energies include nondynamical
correlation, and dynamical correlation is added by the second-
order MC-QDPT step. A key element of this procedure is that
it is a perturb-then-diagonalize procedure. This has the advantage
over the popular diagonalize-then-perturb procedures that the
final step is a diagonalization. As a consequence, one expects
to obtain consistent approximations to coupled potential energy
surfaces even at or near intersections or avoided crossings, and
our results show that this expectation is born out.

According to the MMCC theory, the energy differences
between the EOMCC and full CI energies and the noniterative
corrections to EOMCC energies that result from them can be
expressed in terms of the generalized moments of the EOMCC
equations. The projections of the EOMCCSD equations on triply
excited determinants defining the corresponding moments of

Eµ
CR-EOMCCSD(T)) Eµ

EOMCCSD+ Nµ
CR(T)/Dµ

(T) (1)

HA: x ) 0
y ) RA cosR
z ) RA sin R

HB: x ) RB cosR sin ωB

y ) -RB cosR cosωB

z ) RB sin R
HC: x ) -RC cosR sin ωC

y ) -RC cosR cosωC

z ) RC sin R

(2)

Eh )

∑
(V1

CR-EOMCCSD(T)+ V2
CR-EOMCCSD(T)) + (V1

MC-QDPT + V2
MC-QDPT)

4 × 91
(3)

ε )

∑
|V1

CR-EOMCCSD(T)- V1
MC-QDPT| + |V2

CR-EOMCCSD(T)- V2
MC-QDPT|

2 × 91
(4)

P ) ε

Eh
× 100 (5)
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these equations enter the numerator term of eq 1. The
denominator in eq 1 renormalizes the triples corrections, and
this renormalization allows the CR-EOMCCSD(T) method to
improve the results in the bond breaking region. Thus we expect
improved performance for potential energy surfaces of photo-
dissociation processes, and a comparison of the MC-QDPT and
CR-EOMCCSD(T) results shows that this is achieved. In
particular, results for scans 1-4 are shown in Figures 1-4,
respectively. In the case of planar ammonia (scans 1 and 3),
we find that the CR-EOMCCSD(T) and MC-QDPT values
of the V1 and V2 potential energy curves are in excellent
qualitative agreement. Figure 1 shows that both methods yield
a conical intersection at an N-H distance of 2.10 Å. The

potential energy curves for N-H distances between 1.8 and 2.3
Å are enlarged and shown as an inset plot in Figures 1 and 3.
In the case of nonplanar geometries (scans 2 and 4) the poten-
tial curves have an avoided crossing for both MC-QDPT and
CR-EOMCCSD(T) methods, as shown in Figures 2 and 4.

The adiabatic energies for the ground and the first excited
state of ammonia obtained using the multireference MC-QDPT
and single-reference CR-EOMCCSD(T) methods agree within
7% on average (calculated using eq 5; in particular,ε ) 0.35
eV andEh ) 4.92 eV). The potential energy curves along key
one-dimensional cuts that pass through conical intersection and
avoided crossings show similar features. EOMCCSD results
obtained without the triples correction are given in Supporting
Information, and they are much less accurate than the CR-
EOMCCSD(T) results.

It is particularly encouraging that the CR-EOMCCSD(T)
results behave in a reasonable and smooth way near the conical
intersection and that it tends to the asymptotic limit of
dissociation in a reasonable way. In analogy to the standard
CCSD(T) approach for the ground-state problem, the CR-
EOMCCSD(T) method is a single-reference “black-box” scheme
that can be used by nonexperts. In particular, the numerator
and denominator terms,Nµ

CR(T) andDµ
(T), respectively, defining

the triples energy corrections of CR-EOMCCSD(T) are ex-

Figure 1. Plots of the ground-state (triangles) and first-excited-state
(circles) energies for ammonia calculated using MC-QDPT (solid) and
CR-EOMCCSD(T) (open) methods. The solid symbols are connected
by curves to guide the eye. For all calculations we setRB ) RC )
1.020 Å andωB ) ωC, and we vary the internuclear distanceRA. The
values of the remaining internal coordinates areωB ) 60°, R ) 0°.
The region near the conical intersection (marked in the rectangular box)
is shown as an enlarged inset plot.

Figure 2. Plots of the ground-state (triangles) and first-excited-state
(circles) energies for ammonia calculated using MC-QDPT (solid) and
CR-EOMCCSD(T) (open) methods. The solid symbols are connected
by curves to guide the eye. For all calculations we setRB ) RC )
1.020 Å andωB ) ωC, and we vary the internuclear distanceRA. The
values of the remaining internal coordinates areωB ) 60°, R ) 3°.

Figure 3. Same as Figure 1 exceptωB ) 52°, R ) 0°.

Figure 4. Same as Figure 2 exceptωB ) 52°, R ) 3°.
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pressed in terms of the singly and doubly excited clusters
obtained in the CCSD calculations and, in the case of excited-
state calculations, the zero-, one-, and two-body components
of the linear excitation operator that defines the excited-state
wave function in the EOMCCSD ansatz (see ref 12 for the
details). The computer costs of the CR-EOMCCSD(T) calcula-
tions per electronic state of interest are essentially identical to
the costs of standard CCSD(T) calculations. Thus, in analogy
to the CCSD(T) approach,1,15 the CR-EOMCCSD(T) method
is anno

2nu
4 procedure in the iterative CCSD/EOMCCSD steps

and anno
3nu

4 procedure in the noniterative steps involving triples
(no and nu are the numbers of correlated occupied and unoc-
cupied orbitals, respectively).

The ability to obtain accurate results for this kind of a problem
can have a profound affect on our future ability to develop
systematic, validated methods for photodissociation problems
as well as making it much more straightforward to carry out
specific applications.
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S. A.; Kuś, T.; Musiał, M. Theor. Chem. Acc.2004, 112, 349-393.

(12) Kowalski, K.; Piecuch, P.J. Chem. Phys. 2004, 120, 1715. Włoch,
M.; Gour, J. R.; Kowalski, K.; Piecuch, P.J. Chem. Phys.2005, 122,
214107.

(13) (a) Nakano H.J. Chem. Phys. 1993, 99, 7983. (b) Nakano, H.Chem.
Phys. Lett.1993, 207, 372.

(14) Nakano, H.; Nakajima, T.; Tsuneda, T.; Hirao, K.THEOCHEM
2001, 573, 91.

(15) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M.
Chem. Phys. Lett. 1989, 157, 479.

(16) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A.J. Chem. Phys.
1980, 72, 650.

(17) Frisch, M. J.; Pople, J. A.; Binkley, J. S.J. Chem. Phys.1984, 80,
3265.

(18) Nakamura, H.; Xidos, J. D.; Thompson, J. D.; Li, J.; Zhu, T.; Lynch,
B. J.; Volobuev, Y.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G.
HONDOPLUS-v.4.6, based on HONDO-v.99.6; University of Minnesota:
Minneapolis, 2004.

(19) Dupuis, M.; Marquez, A.; Davidson, E. R.HONDO 99.6, based
on HONDO95.3; Dupuis, M., Marquez, A., Davidson, E. R., Eds.; Quantum
Chemistry Program Exchange (QCPE): Indiana University, Bloomington,
IN, 47405; 1999.

(20) Piecuch, P.; Kucharski, S. A.; Kowalski, K.; Musiał, M.Comput.
Phys. Commun. 2002, 149, 71-96.

(21) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.;
Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A.J. Comput. Chem.
1993, 14, 1347-1363.

11646 J. Phys. Chem. A, Vol. 109, No. 51, 2005 Letters


